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Abstract 

Two new versions of the k - w two-equation turbulence 
model will be presented. The new Baseline (BSL) model 
is designed to give results similar to those of the original 
k - w model of Wilcox, but without its strong dependency 
on arbitrary freestream values. The BSL model is identical 
to the Wilcox model in the inner 50% of the boundary-layer 
but changes gradually to the standard k - model (in a 
k - w formulation) towards the boundary-layer edge. The 
new model is also virtually identical to the k - 6 model Cor 
free shear layers. The second version of the model is called 
Shear-Stress Transport (SST) model. It is a variation of the 
BSL model with the additional ability to account for the 
trnnsport of the principal turbulent shear stress in adverse 
pressure gradient bound,uy-layers. The model is based on 
Bradshaw's assumption that the principal shear-stress is pro- 
portional to the turbulent kinetic energy, which is introduced 
into the definition of the eddy-viscosity. Both models are 
tested for a lnrge number of different flowfields. The results 
of the BSL model are similar to those of the original k - w 
model, but without the undesirable freestream dependency. 
The predictions of the SST model are also independent of 
the freestream values hut show better agreement with exper- 
imental data for adverse pressure gradient boundary-layer 
flows. 

Introduction 

The m k n  field of application of Navier-Stokes meth- 
ods in aerodynamics will be for complex turbulent flows 
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that cannot be treated by inviscid, or viscous-inviscid inter- 
action schemes. Examples are massively separated flows, 
flows involving multiple length-scales, flows with three- 
dimensional separation and complex unsteady flows. In 
these flows, the application of algebraic turbulence mod- 
els, like the Cebeci-Smith 111, the Baldwin-Lomax [21 or 
the Johnson-King [31 model, becomes very complicated and 
often ambiguous, mainly because of the difficulty to define 
an algebraic length-scalc. It is obvious that the improve- 
ment of numerical methods must be accompanied by the 
development of more general turbulence models and their 
implementation into Navier-S tokes codes. 

In addition to being independent of the spccification of 
an algebraic length-scale, there is a long list of characteristics 
a good turbulence model would have to satisfy. Obviously, 
the model should be "sufficiently" accurate for the intended 
type of applications. Furthermore, 'and almost as important, 
the model must be numerically robust and should not con- 
sume excessive amounts of computation timc (compared to 
the mean-flow solver). Another important demand is that the 
results should not have a strong dcpendency on ambiguous 
quantities, especially on thc specified freestrean valucs. 

The most popular non-algebraic turbulence models arc 
two-equation eddy-viscosity models. These models solve 
two transport equations, generally one for the turbulent ki- 
netic energy 'and another one related to the turbulcnt Icngth- 
(or time-) scale. Among the two-equation models, the k - f 
model is by far the most widely used today. The first low 
Reynolds number k - f model was developed by Jones ,and 
Launder [41 aid has subsequently been modified by many 
authors. 

The k - 6 model has been very succcssful in a large 
variety of diffcrenr flow situations, hut i t  also has a num- 
ber of well known shortcomings. From the standpoint of 
aerodynamics, the most disturbing is the lack or scnsitivity 
to adverse pressure-gradients. Under those conditions, the 
model significantly overpredicts the shear-stress levels and 



thereby delays (or completely prevents) separation [SI. Rodi 
[6] attributes this shortcoming to the overprediction of the 
turbulent length-scale in the near wall region and has shown 
that acorrection proposed by Hanjalic and Launder improves 
the predictions considerably. However, the correction is not 
coordinate-invariant and can therefore not be applied gener- 
ally. An alternative way of improving the results has been 
proposed by Chen ‘and Patel [7] and by Rodi [8]. They re- 
place the t-equation in the near wall region by a relation 
that specifies the length-scale analytically. This also reduces 
some of the stiffness problems associated with the solution 
of the model. Although the procedure is coordinate indepen- 
dent, it has only been applied to relatively simple geometries, 
where the change between the algebraic relation and the e - 
equation could be performed along a pre-selected gridline. 
Clearly thiscannot bedone in flows around complex geome- 
tries. Furthermore, the switch has to be performed in the 
logarithmic part (the algebraic length-scale is not known in 
the wake region), so that the original k - f model is still 
being used over most of the boundary layer. 

Another shortcoming of the k - f model is associated 
with the numerical stiffness of the equations when integrated 
through the viscous sublayer. This problem clearly depends 
on the specific version of the k - f model selected, but there 
aresomegeneral aspects toit. AlllowReynoldsnumber k-f  
models employ damping functions in one form or another in 
the sublayer. These are generally nonlinear functions of di- 
mensionless groups of the dependent variables like R, = =. 
The behavior of these functions cannot easily be controlled 
by conventional linearization techniques and can therefore 
interfere with the convergence properties of the scheme. A 
second problem is that does not go to zero at a no-slip sur- 
face. That in turn leaves two alternatives. One is to employ 
a nonlinear boundary condition on f (t = f(g)), or to 
add additional terms to the 6 - equation [41 that allow the use 
of a homogeneous boundary condition. Both approaches in- 
troduce additional nonlinearities that can upset a numerical 
procedure. 

There is a significant number of alternative models 
[9, 10, 111 that have been developed to overcome the short- 
comings of the k - model. One of the most successful, 
with respect to both, accuracy and robustness, is the k - w 
model of Wilcox [9]. It solves oneequation for the turbulent 
kinetic energy k and a second equation for the specific turbu- 
lent dissipation rate (or turbulence frequency) w. The model 
performs significantly better under adverse pressure-gradien t 
conditions than the k - c model although it is the author’s 
experience that an even higher sensitivity to strong adverse 
pressure-gradients would be desirable [12]. Another strong- 
point of the model is the simplicity of its formulation in the 
viscous sublayer. The model does not employ damping func- 
tions ‘and has straightforward Dirichlet boundary conditions. 
This leads to significant advantages in numerical stability. 

k2 

However, the k - w model also has a major shortcom- 
ing. It has been reported recently that the results of the 
model depend strongly on the freestream values, w f ,  that 
are specified outside the shear-layer. In 1131 this problem 
has been investigated in detail, and it has been shown that 
the magnitude of the eddy-viscosity can be changed by more 
than 100% just by using different values for w f .  This is 
clearly unacceptable and corrections are necessary to ensure 
unambiguous solutions. 

In this paper, two new turbulence models will be pre- 
sented. First, a new baseline (BSL) k - w model will be 
described. It is identical to the k - w model of Wilcox [9] 
for the inner region of a boundary layer (up to approximately 
6/2) and gradually changes to the standard k - f model in the 
outer wake region. In order to be able to perform the com- 
putations with one set of equations, the k - c model was first 
transformed into a k - w formulation. The blending between 
the two regions is perfonned by a blending function F1 that 
gradually changes from one to zero in the desired region. No 
a priori knowledge of the flowfield is necessary to perform 
the blending. The function also ensures that the k - for- 
mulation is selected for free shear-layers. The performance 
of the new (BSL) model is very similar to that of the Wilcox 
k - w model for adverse pressure gradient boundary-layer 
flows (and therefore signific,antly better than that of the k - f 
model), but without the undesirable freesueam dependency. 
For free shear layers the new model is basically identical 
to the k - 6 model, which predicts spreading rates more 
accurately than the k - w model. 

perform better in adverse pressure gradient flows than the 
k - t model, they still underpredict the amount of separa- 
tion for severe adverse pressure gradient flows [121. In an 
attempt to improvematters, the eddy-vicosity formulationof 
the BSL model will be modified to account for the transport 
effects of the principal turbulent shear-stress. The motiva- 
tion for this modification comes from the Johnson-King (JK) 
model [3] which has proven to be highly successful for ad- 
verse pressure gradient flows. The JK-model is based on 
the assumption that the turbulent shear-stress is proportional 
to the turbulent kinetic energy in the logarithmic and wake 
regions of a turbulent boundary layer. Johnson and King 
solve an equation for the mnximum turbulent shcar-stress 
at each downstream station and limit the eddy-viscosity in 
order to satisfy this proportionality. In the fr‘mework of 
two-equation models the turbulent kinetic energy is already 
known and it is therefore only necessary to limit the eddy- 
viscosity to account for the same effect. The resulting model 
will be called shear-stress transport (SST) model. First pre- 
dictions based on this assumption have already been reported 
in [12]. 

The BSL and the SST models are not significnntlymore 
complicated than the original k - w model ‘and consume only 
little more computing time. Because the two models are 
virtually identical to the original k --w model in the near wall 

Although the original - ‘and the new BSL k - w model ‘LJ 
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region, the modifications developed by Wilcox [9] for rough 
walls and for surface mass injection can he applied without 
changes. Furthermore, the models have shown the sane Dpk au. * 8 
numerical robustness as the original model for all the flows -- 

~t rij &$ - ’ pwk  + 

V computed so far. The present paper is based on the work 
presented in [14]. However theequations have been changed 
somewhat in order to optimize the model perfonnancc for 
transonic flows and through tr,ansition. D p w - Y r . . l - s  - 8 U .  

~1 %3azj 

The Turbulence Model 

The new Baseline (BSL) Model 

The idea behind the BSL model is to retain the robust 
and accurate formulation of the Wilcox k. - w model in the 
near wall rcgion, ‘and to t&e adv‘mtage of the freestream 
independence of the k - f model in the outer part of the 
boundary-layer. In order to achieve this, the 12 - < model 
is tr‘ansforined into a k - w formulation. The difference 
between this fortnulationand the original k - w  model is that 
an additional cross-diffusion term appears in the w-equation 
and that the modeling constants are different. The original 
model is then multiplied by afunction Fl and theuansfonned 
model by a function (1 - F l )  and both are added together. 
The function Fl will he designed to he one in the near wall 
region (activating the original model) and zero away from 
the surface. The blending will take place in the wake region 
of the boundary-layer. The left hand side of the following 
equations is the Lagrangian derivative: D/DL := A/i3t + 
1118/Axi. L/ 

Original k - w model: 

1 a k  aw 
+ 2 p ( l -  FI)u”2--- 

w a x j  az j  

Let 41 representanyconstmtintheoriginalmodeI(~l;~, ...), 
42anyconstantin thetransformedk-6inodel(uk2, ...) and 
4 the corresponding constant of the new model (uk ... ), then 
the relation between them is: 

4 = F I ~ I  + (1 - F1142. (7) 

the following two sets of constants will he used: 

Set l (41)  (Wilcox): 

U ~ I  = 0.5, uwl = 0.5, ’1 = 0.0750, (8 )  

p* = 0.09, K = 0.41, 71 = pl/p‘ - U ~ ; K ~ / @  

Set 2 (42) (standard k - 6 ) :  

U A ~  = 1.0, uu2 = 0.856, fl2 = 0.0828, (9) 

@* = 0.09, K = 0.41, 72 = @2/,8’ - uw2tc2/fi.  

used in the near wall region exclusivelv. Set 2 corresnonds 

Dpk - all, * 
- ‘‘3% -0 (f‘  + (l) Set 1 corresponds to the original k - w model and will he 

I 

to the transformation of the standard IC - e model (qC = 
1 44, c2< = 1.92) ,and its main area of application is for free 
shear-layers. 

The inodcl has to he supplemented by the definition of 
Transformed 6 - c model: the cddy-viscosity: 

- 
The turbulent stress tensor rij = -pu{u: is then given by: 

In order to comnlete the derivation of the model it is 
(4) 

I 8k i)w + 2puu2 - - - 
w A x ,  82, . .  

necessary to define the blending function Fl .  Starting from 
thc surface, the function should be equal to one over a lxge 
portion of the boundary layer in order to preserve the de- 
sirable features of the k - w model, but go to zero at the 
boundary layer edge to ensure the freesuerun independence 

Now, equation (1) and equation (2) are multiplied by F; and 
equation (3) and equation (4) nre multiplied by (1 - F I )  and 
the corresponding equations of each set are added together 
to give the new model: 

- 
3 



of the k - e model. The function will be defined in terms of 
the variable: 

as follows: 
(13) F1 = tanh(argl)  4 

where CD,, is the cross-diffusion term of equation (4): 

The first argument in equation (12) is the turbulent length 
scale Lt = 4/(0.09w) (= k3/2/c),dividedby theshortest 
distance to the next surface, y. The ratio Lt /y  is equal 
to 2.5 in the logarithmic region of the boundary-layer and 
goes to zero towards the boundary-layer edge. The second 
argument in equation (12) ensures that the function F1 does 
not go to zero in the viscous sublayer. The third argument 
is an additional safeguard against the “degenerate” solution 
of the original k - w model with sinall freestream values 
for w [131. Figure la  shows the typical behavior of the 
function F1 for different velocity profiles in a strong adverse 
pressure gradient boundary layer (it also depicts the function 
F2 explained later). Figure 1 also includes the underlying 
velocity profiles (same linestyle). The function is equal to 
oneoverabout SO% ofthe boundary-layerand thengradually 
goes to zero. The behavior of the new BSL model will 
obviously lie somewhere between the original k - w and the 
k - e  model. However, since most of the production of both, 
k and w, takes place in the inner 50% of the layer, it can be 
expected that the model performance will be closer to that 
of the k - w model, governing this area. Recall that the 
replacement of the e equation by an algebraic length-scale, 
as proposed by [7,8] has to be performed in the logarithmic 
region so that the original k - c model still covers the largest 
part of the boundary layer and results will therefore be much 
closer to those of the IC - c model. 

The Shear-Stress Transport (SST) Model 

One of the major differences between eddy-viscosity 
and full Reynolds-stress models, with respect to aerodynamic 
applications, is that the latter accounts for the important 
effect of the transport of the principal turbulent shear-stress 
r =: -pu’d (obvious notation) by the inclusion of the term 
- 

The importance of this term has clearly been demonstrated 
by the success of the Johnson-King (JK) [3] model. Note 
that the main difference between the JK - model and the 
Cebeci-Smith model lies in the inclusion of this term in the 
former, leading to significantly improved results for adverse 
pressure gradient flows. The JK model features a transport 

equation for the turbulent shear-stress r that is based on 
Bradshaw’s assumption that the shear-stress in a boundary- 
layer is proportional to the turbulent kinetic energy, k ,  : 

v r = palk  (16) 

with a1 being aconstant . On theother hand, in two-equation 
models, the shear-stress is computed from: 

r = pJl  (17) 

with R = p. For conventional two-equation models this 
relation can be rewritten to give: 

Y 

as noted in [121. In adverse pressure gradient flows the ratio 
of production to dissipation can be significantly larger than 
one, as found from the experimental data of Driver [IS], and 
therefore equation (18) leads to an overprediction of r. In 
order to satisfy equation (16) within the framework of an 
eddy-viscosity model, the eddy-viscosity would have to be 
redefined in the following way: 

a l k  ut = - R ’  (19) 

The rational behind this modification can also be explained in 
thefollowing way: In conventional two-equation models the 
turbulent shear-stress responds instantaneously to changes in 
theshear-strain rate 52, much likean algebraic eddy-viscosity 
model, whereas equation (19) guarantees that r does not 
change more rapidly than pal k .  Obviously, equation (19) 
is not desirable for the complete flowfield. since it leads to 
infinitely high eddy-viscosities at points where n goes to 
zero. Note however, that in adverse pressure gradient flows, 
production is larger than dissipation for the largest part of 
the layer (or R > q w ) .  The following expression: 

‘4 

guarantees therefore the selection of equation (19) for most 
of the adverse pressure gradient regions (wake region of the 
boundary layer), whereas the original equation (10) is used 
fortherest ofthe boundarylayer. Figure2shows therelation 
of ( -? l” /a lk )  versus J P r o d u c t i o n l D i s f i i p a t ~ o ~ ~  for the 
SST model (equation (20)). the conventional k - w ( k  - e )  
model (equation (lo)), Bradshaw’s relation (equation (16)) 
and arelation proposed by Coakley [lo]. Notethat Coakley’s 
relation contains the relations of Bradshaw (p = 1) and that 
of the conventional two-equation models (p = 0) as a subset, 
but not equation (20) (0 is a free parameter of Coakley’s 
model). 

In order to recover the original formulation of the eddy- 
viscosity for free shear-layers (where Bradshaws assump- 
tion, expressed in equation (16) does not necessarily hold) 

‘.. , 

4 
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the modification to the SST model has to be limited to wall 
bounded flows. This can be done in the same way as for the 
BSL model by applying a blending function F2. 

where F2 is defined similarly to quation (13): 

(23) 
I;* is depicted in Fig. Ib  in thc same way as F1 in Fig. la. 
Since the modification to the eddy-viscosity has its largest 
impact in the wake region of the boundary layer, it is im- 
perative that I;2 extends funher out into the boundary-layer 
than F1. (Note on the other hand that F1 has to fall off to 
zero well within the boundary-layer in order to prevent the 
freestream dependence of the k - w model). 

This modification to the eddy-viscosity is used in con- 
nection with the BSL model derived above. However, in 
order torecover the correct behavior for a flat plate boundary 
layer, the diffusion COnSkWt uk1 had to be adjusted accord- 
ingly. The constants for the SST model are: 

F2 = tnnh(nrg2)  2 

Set 1 (SST - inner): 

L/ = 0.85, uWl 0.5, p1 = 0.07.50, = 0.31, (24) 

@* = 0.09, I( = 0.41, y1 = pi/@* - u w l ~ 2 / f i .  

Set 2 reinnins unchanged. Furthennore, for gencral flows s2 
is taken to be the absolute value of thevorticity. Both models 
are given in their full form in Appendix A. 

Two new turbulence models have been introduced in 
this section. Both can be regarded as zonal models, since 
they utilizc different models for different areas of the flow- 
field. However, in contrast to the classical zonal approach 
the present models do not require an a priori knowledge of 
the flowfield in order to define the zonal boundaries where 
the different models are to be used. The cb'mge between 
the different sub-models is achieved by "smart" functions 
that can distinguish between the different zones. Note that 
similar functions could also be designed for the k - t model. 
This inakes it possible to design one set of constants for wall 
bounded flows and a second set for free shear-layers and 
to switch between the diffcrcnt sets in the same way as in 
equation (7). 

The BSL model retains the advankiges of the Wilcox 
k - w model for boundary-layer applications, but avoids its 
undesirable frccstream dependency. Furtherrnorc it switches 
to the more accurate k - 6 model for free shear-layer ap- 
plications. In addition to this, the SST model modifies thc - 

definition of the eddy-viscosity for adverse pressure gradient 
boundary-layer flows in much the same way as the Johnson- 
King model does. From a computational point of view both 
models are not significantly more complex than the original 
k - w model. 

Boundary Conditions 

At a no-slip wall, all turbulent quantities, except w are 
set to zero. As pointed out by Wilcox [91, w satisfies the 
following equation near the wall: 

Wilcox recommends to specify this analytical solution for 
the first few gridpoints away from the wall explicitly. The 
present author found it much easier and as accurate to im- 
plement the following boundnry condition: 

where Ayisthedistanceto thenextpointawayfrom thewall. 
Equation (26) simulates the boundary condition 25 without 
the need of changing the solution at interior points. It should 
be noted that models based on the w-equation give accurate 
resultsifthenear wall valuesofw aresufficiently large. Both, 
equations (25) and (26) satisfy this demand. The results are 
not sensitive to the factor (10) used in equation (26). 

At inflow boundaries, the turbulencequantitiesarespec- 
ified and at outflow boundaries a zero gradient is wumed. 

Two of the computed flowfields have a rotational syn- 
metry. In this case, the gradients of all turbulence quantities 
in the circumferential direction are set to zero. 

Numerical Method 

The mean flow equations are solved by the INS3D code 
of S. E. Rogers and D. Kwak [ 161 which is based on apseudo- 
compressibility method. The convective terms are upwind 
differenced with a third-order flux-difference scheme. The 
viscous fluxes are differenced with second-order accurate 
central diffcrcnces. The linear equations resulting from the 
first-order backward Euler time differencing are solved with 
an implicit line relaxation scheme. 

Thc turbulcnccequations have been solvcd with a num- 
ber of different schemes, from a third-order upwind diffcr- 
encing, to a second-order TVD (total variation diminishing) 
[I71 to a first order upwind scheme. It was found in all 
computations that thc solutions were virtually independent 
of thc scheme used in the turbulence equations, although a 
change of accuracy in the inem flow solver had a Ixgc ef- 
fect. The reason for the insensitivity to the treatrncnt of the 
convection terms in the turbulence model is, that unlike in 
the Navicr-Stokes equations, they Ne not the leading order 
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terms. For this reason most of the computations are based on 
a first order upwind scheme. The turbulence equations were 
solved decoupled from the mean flow equations in a separate 
subroutine. Oneof the important aspects in thediscretization 
of turbulence models is the implicit treatment of the source 
terms. The following approximate linearization gave good 
numerical properties: 

, (28) 
I C W 1 + 2 D W  a 

-(Pw + cw - D w )  % - 
W 8 W  

where P, D ,  C are the production, the destruction and the 
additional cross diffusion terms respectively. The above 
expressions go to the left hand side of the algorithm with a 
change of sign and thereby increase the diagonal dominance 
of the method. The resulting numerical scheme has proven 
to be very robust and all of the Computations with the k - w 
models could be run with an infinite time step. An exception 
is the backward facing step flow where the time step had 
to be reduced for all models tested so far by the author. 
Furthermore, the computations could be started with very 
crude initial conditions (like freesueam values). 

Experience with two-equation turbulence models has 
shown that in regions of low values of w (t/k),  small dis- 
turbances in the shear strain rate can lead to erroneous 
spikes in the eddy-viscosity in the freestream or near the 
boundary layer edge. In order to understand the effect, 
the transport equation for the eddy-viscosity was derived 
from the k - w model for incompressible flows (note that 
Dvt /Dt  = l / w D k / D t  - k / w 2 D w / D t ) :  

nut aui i)uj aui 
nt ax j  axi  ax j  - = (I-y)-(-+-)--(p*-~)k+ . . .  (29) 

If w goes to zero and ut is finite (typically a fraction of 
the molecular viscosity), the production term for the eddy- 
vicosity goes to infinity for small disturbances in the strain 
rate. A simple way to prevent this from happening is to 
compute both the production term of k ,  Pk, and the dissipa- 
tion term, D k ,  and than to limit the production term by the 
following formula: 

Fk = nli"(Pk,20. D k ) .  (30) 

This limiter has been very carefully tested and it was found 
that even for complex flows theratioof Pk.Dk reaches inax- 
imum levels of only about two inside shear layers. There- 
fore, Equation (30) does not change the solution but only 
eliminates theoccurrence of spikes in theeddy-viscosity due 
to numerical "wiggles" in the shear-strain tensor. It also 
eliminated the unphysical buildup of eddy-viscosity in the 
stagnation region of an airfoil, as reported in 1141. Note that 
this is not a specific problem of the k - w model but has also 
been observed with the k - c model. 

6 

All computations have been performed on different 
grids, to ensure that the presented solutions are grid inde- 
pendent. The airfoil computations were performed on a 
standard grid kindly provided by S .  E. Rogers [181. v 

Results 

Fiat Plate Boundary Layer 

In order to show the motivation for the derivation of the 
BSL model, flat plate zero pressure gradient boundary-layer 
computations with different freestream values for w have 
been performed. It has been shown in [I31 that the correct 
freestream values for w outside the boundary-layer are: 

4 "2, 
W f  =-- JpT lies* 

where uT = is the friction velocity, defined in terms 
of the wall shear-stress T ~ ,  Ue is the freestream velocity 
and 6* is the displacement thickness. For the first set of 
computations, the above value has been specified at the in- 
flow boundary in the freestream for both the original and 
the BSL k - w model. Then, the above value was reduced 
by four orders of magnitude and the computations were re- 
peated with both models. Note that the freestream value of k 
was also reduced in order to keep the freestream value of the 
eddy-viscosity constant (equal to the molecular viscosity). 
Figure 3 shows eddy-viscosity profiles for the original and 
the BSL k - w model. The eddy-viscosity of the original 
model changes by almost 100% due to the changes in w f ,  
whereas the BSL model gives the same results for both cases. 
The strong sensitivity of the original model to wf is clearly 
unacceptable and can lead to a severe deterioration of the 
results for complex flows, as will be shown later. Results of 
the SST model were also found to be independent of w f .  

In each of the following comparisons between the dif- 
ferent models, w f  for the original k - w model was always 
chosen according to equation (31) whenever possible. In 
cases where the Creestrerun values had to be chosen differ- 
ently, it will be mentioned in the text. Figure 4 shows a 
comp,uison of the SST, the BSL, the original k - w 'and the 
Jones-Launder (JL) k - t model (all JL model computations 
have been performed with damping functions as given in 
[19]) for a zero pressure gradient flat plate boundary layer. 
Obviously, all models predict the correct cf-distributions 
and velocity profiles. The k - w models can be run with thc 
first gridpoint as far out as y+ = 3 without a deterioration 
of the results. 

Free Shear Layers 

'd 

For free shear layers the SST and the BSL model reduce 
to the sane model (PI  = 0; F2 = O), which will be called 
new k - w model in this subsection. Note that the new 
k -w model is formally almost identical to the Jones-Launder 
IC - c model. However a small cross-diffusion tenn has 

,.-,,' 



been neglected in the derivation of equation (4). In order 
to show that this term is truly negligible, the original k - 6 
model is also included in the comparison. All computations 
were performed with 200 gridpoints across the layer. A grid 
refinement study on a grid with 300 points gave the sane 

Figure 5 shows the results of the solution of the equi- 
librium far wake equations for the different models. The 
results are compared to the experimental dati of Fage and 
Falkncr [20]. Obviously, the new k - w model and the JL 
k - 6 model produce almost identical results. The original 
k - w model predicts a somewhat lower spreading-rate than 
the other models. As is well known for two-equation mod- 
els, they fail to predict the smooth behavior of the data at 
the edge of the layer. The freestream value for the original 
k - w model has been derived from an expression similar to 
equation (31) [131. 

Figure 6 shows solutions for a self-similar planc jet, as 
reportedin[21]. Agdn,thenew k -w  andtheJLmodelpro- 
ducc almost identical results 'and are in very good agreement 
with the experiments, whereas the original k - w model 
shows ii rather peculiar behavior. A major difference be- 
tween the far-wake flow and the present flow is that the 
freestream velocity is zero (still air). The only acceptable 
freestream value for w in still air is wf = 0, as can he seen 
from the equilibrium equations [I31 and from physical intu- 
ition. The specification of small values for wf leads to large 
eddy-viscositiesin theoriginal k -w model, a5 demonstrated 
in Fig. 3 for the flat plate bound'uy-layer. The sane is true 
in the present flow to an even larger extent, because of the 
missing wall influence. The original k - w model predicts 
about five times as high 'an eddy-viscosity as the other two 
models, resulting in the largespreading rates shown in Fig. 6. 

A comparison with the free mixing-layer experiment of 
Liepman and Laufer [22] is shown in Fig. 7. Note that the 
freestrean velocity below the mixing-layer is zero, leading 
to the same problem with the original k - w model as for the 
planc jet. The other two models again produce almost iden- 
tical results in acceptable agreement with the experiments. 

Adverse Pressure Gradient Flows 

- results. 

Oneofthemostimportantaspects ofaturbulencemodel 
for aerodynamic applications is its ability to accurately pre- 
dict 'adverse pressure gradient boundary-layer flows. It is 
especiaJly important that a model can predict thelocation of 
flow separation and the displacement effect associated with 
it. The reason is that the viscous-inviscid interaction has 
:i strong influence on the overall pressure distribution 'and 
therefore on the performance of the aerodynamic body. 

The most widely used test case to meawe the perfor- 
rnilllce of turbulence models underadverse pressure gradient 
conditions is the flow reported by Samuel and Joubert [23]. 
It  is it flat plate boundary-layer, developing under 'an increas- 
ingly adverse pressure gradient. The upstream Reynolds u 

number is 1.7 . 1O6ni-*. The flow is retarded by the pres- 
sure gradient, hut not separated. 

Two different sets of computations have beenperformed. 
At first, the experimental pressure dislribution was specified 
at the outer edge of the computational domain (opposite to 
the wall). Since this is not a very straightforward bound- 
ary condition for a Navier-Stokes method, a second set of 
computations was performed based on the specification of an 
inviscid external streamline. The inviscid strerunline y(z)$ 
is defined by the preservation of mass: 

n, = "li'" p U p z p . ( X ,  v)d!/ = CO?l.?t .  (32) 
0 

Note that the specification of a streamline does not mean that 
the displacement thickness is prescribed like in an inverse 
boundary-layer method. Both computations produced very 
similar results. The solutions shown here are for the pre- 
scribed streamline, which is thought to he the more consis- 
tent boundary condition from a numerical point of view. The 
eddy-viscosity at the inflow boundary was determined from 
theexperimental shear-stress and velocity profiles, the turbu- 
lent kinetic energy k from the requirement k = (-.")/a* 
and w and c from the definition of the eddy-viscosity. The 
same grid of 90x90 points as in [I21 was used for the coin- 
putations. The results are virtually identical to those on a 
6Ox60and a 12Ox120grid. 

Figure 8 shows a cornparison of the computed and the 
experimental skin-friction distribution. All three k - w mod- 
els reproduce thc cxperiinenkd data almost exzictly, whereas 
theJL k - c model givcs significantly to high values. 

Figure 9 shows the sane comparison for the velocity 
profiles. There are no large differences to be found between 
the different models. Only the SST model predicts a some- 
what stronger retardation of the flow near the surface. The 
same behavior has been observed with the Johnson-King 
model in [121. 

Turbulent shear-stress profiles are shown in Fig. 10. 
All models arc slightly overpredicting the mount of shear- 
stress, with the SST model closest and the JL model furthest 
away from the data. 

It is obvious that the small differenccs between the so- 
lutions, especially betwccn the different k - w models, do 
not allow final conclusions about the abilities of the mod- 
els to predict adverse pressure gradient flows. It appears 
that the Srunuel-Joubert flow does not pose a sufficiently 
strong challengc to the models to assess their potentials for 
this type of flows. The author has reached a similar con- 
clusion in [121, where a solution of the Johnson-King (JK) 
model has shown, that the model did not significantly depart 
from its equilibrium formulation. It is therefore important to 
test models under more demanding conditions, with stronger 
adverse pressure gradients and possibly sep;uation. The fol- 
lowing flowfield, reported by Driver [IS], has proven to bea 
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highly self-consistent and demanding test case, and is there- 
fore strongly recommended for the assessment of turbulence 
models under adverse pressure gradients. 

In Driver’s flow, a turbulent boundary-layer develops 
in the axial direction of a circular cylinder. An adverse 
pressure gradient is imposed by diverging wind tunnel walls 
and suction applied at these walls. The pressure gradient is 
strong enough to cause the flowfield to separate. The inflow 
Reynolds number is 2.8. lo5 based on the diameter D of the 
cylinder (140mm). 

The boundary conditions for this flow are similar to 
those used for the Samuel-Joubert flow. Again an inviscid 
swemline is extracted from the experimental velocity pro- 
files and a slip condition is applied along this line. The 
inflow conditions are determined from the experimental pro- 
files in the Same way as described above. The computations 
have been performed with a three-dimensional version of 
the code. In order to account for the axial symmetry, three 
closely spaced circumferential planes where introduced and 
symmetry conditions were applied. A 60x3~60 grid [121 
was used for the present computations. A computation on a 
100x3~100 grid gave almost identical results. 

The JL model obviously predicts signific,antly higher 
shear-stress levels than the other models, especially in the 
region where separation is approached. This in turn leads to 
the firmly attached velocity profiles of Fig. 13. The differ- 
ences between the models can be seen more clearly by look- 
ing at the eddy-viscosity distributions. Figure 15 shows the 
maximum value of the kinematic eddy-viscosity profiles for 
all x-stations, nondimensionalized by ue6*. The SST model 
predicts thereduction ofthisquantitydue to theadverse pres- 
sure gndient in very good agreement with the experiments. 
The BSL and the orig. k - w model are very close to each 
other up to separation (around x / D  = 0), wherezs the orig. 
model is closer to the experiments in the recovery region. 
Both models give consistently to high values for the maxi- 
mum eddy-viscosity in the adverse pressure gradient region. 
The k - f model falls only barely below the value of 0.0168 
recommended by Clauser for equilibrium boundary-layers 
(‘and used in the Cebeci-Smith model) and thereby fails to 
account for the nonequilibrium effects altogether. 

Backward-Facing Step Flow 

L,-./ 

Results for the flow over a backward facing step as 
reported by Driver and Seegmiller [25] will be discussed 

flow ascomputed by the different models. The SST model 
gives superior results to the other models due to its ability 
to account for the transport of the principal turbulent shear- 
stress. As expected, the JL k - t model produces the worst 
results, and the BSL and the original k -w model being close 
to each other in the middle. 

Figure 12, depicting the wall shear-stress distrihution 
for Driver’s flow, shows that the SST model predicts the 
largest ‘mount of separation, whereas the JL model stnys 
firmly attached. Again, the BSL and the orig. k - w model 
produce very similar results, in good agreement with the 
experiments. 

The differences between the models can be seen more 
clearly in Fig. 13 which shows the velocity profiles. The 
SST model cle;lrly produces the best agreement with the 
experiments. The larger displacement effect predicted by 
this model is reflected in  the flattening of the cl,-distribution 
as observed in  Fig. 11. The orig. k - w model predicts 
slightly better results than the BSL model, and the JL k - f 
model shows very little sensitivity to the pressure gradient, 
as already reflected in Figs. 11 ‘and 12. 

The reasons for the different behavior of the models 
can be seen in the following two pictures. Figurc 14 com- 
pares turbulent shear-stress profiles at different stations. The 
experimental data are shown both, in a surface (Carth.) ori- 
ented and in a streamline (Suml.) oriented coordinate sys- 
tem. (Note that the numerical results were, due to the eddy- 
viscosity formulation, not found to be sensitive to small 
changes in direction). 

conference for the evaluation of turbulence models. How- 
ever, most of the computations at the time were performed on 
comparatively coarse grids and there is substantial evidence 
that significantly finer grids have to be used in order to ob- 
tain grid-independentresults [261. The present computltions 
havebeen performedona 12Ox120grid, with substantialgrid 
refinement near the step. Figure 16 shows the distribution 
of gridpoints. As with the other flowfields a grid refinement 
study was made. The present results are virtually identical 
to those performed on a 90x90 and on a 240x240 grid. The 
Reynolds number, based on the upstream momentum thick- 
ness 0 is, Reo = 5000 and the ratio of the boundary-layer 
thickness to the step height is about 1.5. The expansion ratio 
(height of the tunnel behind the step divided by the height of 
the tunnel in front of the step) is 1.125. 

Figure 17 shows a comparison of computed and ex- 
perimental skin friction distributions. The k - w models 
all perform significantly better than the k - c model. The 
reattachment length of the four models are 6.4 (SST), 5.9 
(BSL), 6.4 (org. k - w )  and 5.5 (JL k - c)  compared to 
a value of about 6.4 in the experiments. The reatkichment 
length predicted by the k - model is better than previously 
reported, certainly as a result ofthe fine grid employed in the 
present computations (see. also [261). However, the model 
predicts significantly too large variations of c f  in the recir- 
culation and the reattachment region. The good results of 
the k - w models show that it is not necessary to account for 
the anisotropy of the stress tensor, as suggested in [271, in  
order to get accurate results for the reattichment length. 

The surface pressure distribution, shown in Fig. 18, re- 
flects the trends already seen in r f .  The larger the separation 
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region predicted by the model the larger is the displacement 
effect of the boundary layer and the smaller is the pressure 
rise in the expansion region after the step. 

Figure 19 shows a comparison of the velocity profiles. 
All models fail to capture the relaxation downstream of reat- 
tachment correctly. The results of [271 show that this is also 
true for more complex models which account for anisotropy 
effects. 

NACA 4412 Airfoil Flow 

v 

The following set of computations is for the flow around 
ii NACA 4412 airfoil at 13.87 degrees ‘angle of attack. The 
Rcynolds number with respect to the chord length is Re = 
1.52.106. Experimentaldakiforthisflowhaveheenreported 
by Coles and Wadcock [28].  The grid for the computations 
consists of 241x61 points and was made available by S .  
Rogers 1181. It is similar to the one used in 1291. 

In the experiment the transition was fixed by transition 
strips at x/c of 0.023 <and 0.1 for the upper ~d lower sur- 
face respectively. As reported in 1291, if these locations are 
specified in the computations, a laminar separation bubble 
appears before the transition point on the upper surface of 
the airfoil. This separatioii bubble was not observed in the 
experiments which indicates that transition may take place 
already before the strip is reached. Compukltions have been 
performed with and without a specified transition location 
and differences between the computations are small. Results 
are givcn here for the case were transition was not specified, 
so that the models picked their own transition location. Tran- 
sition k*eS place at a downstream station of z : / r  N 0.006 on 
the upper nnd z / c  N 0.06 on the lower surface of the airfoil. 

Figure 20 shows a comparison of the computed and 
the experirncnt:d velocity profiles at different strenmwise 
stations. The results are similar to those for the separated 
case of Driver, Fig. 13. Again, the SST model predicts the 
displacement effect in very good agreement with the cx- 
perirnents. The BSL model is showing some response to 
the pressure gradient, ‘and produces results similar to those 
reponed in [291 for the Baldwin-BMh model. Another in- 
teresting result of this computation is that the original k - w 
model predicts velocity profiles even further away from the 
experiments than the Jones-Launder k - e model. The reason 
for the poor performance of the orig. k - w model lies in its 
freestream dcpcndency. In order to underst‘md the problem, 
one has to look at the development of w from the inflow 
boundary to the leading edge of the airfoil. In this inviscid 
region production zmd diffusion of w are zero. The balance 
in t h e w  equation reduces therefore to: 

where B is the streanline direction and rJs is the velocity in 
this direction. Assuming that Us is constant :md equal to 

e 

Urn, the equation can he solved to give: 

(34) 
1 w(s)  = &+A’  Cu 

The largest value of w that can he achieved for a certain 
distance s from the inflow bounduy is: 

1 
(35) 

corresponding to an infinitely large wrn. As s gets large this 
maximum valuebecomessmall. In thepresent computations, 
the distance between the inflow boundary and the airfoil is 
about 15 chord lengths. Non-dimensionalizingall quantities 
with [i, and the chord length, c, leads to a freestream value 
of w in the leading edge region of the airfoil of about wf = 1 
whereas the formula given in 1131 for the estimation of the 
correct freestream value: 

(36) 

indicates that it should he about three orders of magnitude 
larger. The low freestream value of w in turn leads to the very 
high eddy-viscosities shown in Fig. 3 which in turn prevent 
separation. This example clearly shows the dangers of using 
the orig. k - w model for aerodynnmic applications. If the 
correct freestream values could he specified, the results of 
the orig. k - w should be very close to those of the BSL 
model. 

Figure 21 shows a comparison of the computed and the 
experimental surface pressure distributions. The agreement, 
especially for the SST model is not as good as should he 
expected froin the velocity profiles shown in Fig. 20. Al- 
though the SSTrnodel predicts the displacement effect of the 
boundary layer almost exactly, it fails to reproduce the pres- 
sure distribution. This indicates ‘an inconsistency hctwcen 
the computations and the experiments. Likely candidates 
are blockdge effects in the wind tunnel (however, including 
wind tunnel walls in  the computations does not improve the 
results [181) or threc-dimensional effects in the experiment. 

Transonic Bump Flow 

Thc final test case is the axisymmetric transonic shock- 
wave/turbulent boundary layer experiment of Bachalo ‘and 
Johnson 1301. In this cxperiment, an axisymmctric boundary 
layer interacts with a shock wave created by a circular arc, 
as shown in Fig. 22. It is beyond the scope of this paper 
to present a detailcd study of transonic flows ‘and only the 
highest Mach number case will he shown. The Mach num- 
ber for this experiment is 0.925. The number of gridpoints 
used was 150x3~80. Grid-independence was estahlishcd by 
using differcnt grids (129x3~60 and 180x3~100). Figure 23 
shows the wall pressure distribution computed by the thrcc 
different k - w models, compared with the experiment. The 
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SST model predicts significantly better results than the BSL 
and the original k - w model, due to its improved transport 
features. A compressible version of the k - f model has not 
yet been coded and results for that model are therefore miss- 
ing in the comparison. Earlier results of [31] show however 
a similar behavior as the BSL and the original k - w model. 
Detailed comparisons for transonic flows will be presented 
at a later time. 

Conclusions 

Two new turbulence models have been derived from 
the original k - w model of Wilcox [9]. The motivation 
behind the new baseline (BSL) model was to eliminate the 
freestream dependency of the k - w model but retain its sim- 
ple and reliable form, especially in the near wall region. In 
order to achieve thisgoal, a switching function was designed 
that can discriminate between the inner part (appr. 50%) of 
a boundary-layer and the rest of the flowfield. In this inner 
pan the original k - w model is solved, and in the outer wnke 
region a gradual switch to the standard k - c model, in a 
k - w formulation, is performed. 

TheBSLmodel wasthenusedtoderiveamodel thatcan 
account for the transport of the turbulent shear stress (Shear- 
Stress Transport or SST model). The derivation of the model 
was inspired by the success of the Johnson-King (JK) model. 
The main assumption in the JK model that the principal 
turbulent shear-stress is proportional to the turbulent kinetic 
energy was incorporated into the new SST model. This 
modification ensures that the principal turbulent shear-stress 
satisfies the same tr,ansport equation as the turbulent kinetic 
energy. It is designed to act only inside the boundary-layer 
in order to retain the k - c model (transformed to a k - w 
formulation) for free shear-layers. 

Both models were applied to a selection of well docu- 
mented research flows, that are meaningful for aerodynamic 
applications. The results of the computations were compared 
against solutions of the standard k - w and the standard k - 
model, as well as against experimental data. 

The free shear-layer computations have shown that the 
new models giveresults almost identical to those of the IC - c 
model. Another important aspect of those computations is 
that they show clearly the strong ambiguity in the results of 
the original k - w model with respect to freestrerun values. 

The central p'xt of the comparisons is for the behavior 
of the models under adverse pressure gndient conditions. 
The computations of the Samuel-Joubert flow, as well as 
Driver's separated adverse pressure gradient flow show that 
the SST model gives highly accurate results for this type of 
problem. The BSL and the original k - w model produce 
rather similar results, provided the correct freestream values 
are specified in  the latter. 

Computations were also performed for the backward 
facing step flow of Driver and Seegmiller 1251. A very fine 
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grid was employed to ensure grid independence of the re- 
sults. For this problem, the original k - w and the SST 
model give very accurate results. They predict the reattach- 
ment length within the uncertainty of the measurements and 
give an accurate representation of the wall pressure distribu- 
tion. The BSL model gives about 8% too small values for 
thereattachment length. These results are still very accurate, 
considering the notorious difficulties this flow poses to nu- 
merical aw%sment. All models fail to predict the releuation 
of thevelocity profiles downstream of thereattachment point 
correctly. 

Computations for a NACA 4412 airfoil at an angle of 
attack near maximum lift condition confirm the findings of 
the adverse pressure gradient computations. The SST model 
predicts highly accurate velocity profiles, almost identical 
to those of the experiments. The BSL model has a smaller 
sensitivity to the adverse pressure gradient than the SST 
model and therefore predicts less retarded profiles. A very 
surprising result ofthe computationsis that theoriginal k -w 
model gives even less accurate solutions than the Jones- 
Launder k - 6 model. The reason for the failure of the 
model is again its freestrerun dependency. This computation 
clearly shows that theoriginal IC -w model c'mnot beapplied 
unambiguously for industrial ;applications. 

The last set of computations is for a transonic shock- 
wave/turbulent boundary layer interaction. The accurate 
prediction of the shock location by the SST model shows 
that the good performance of this model for incompressible 
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applications can be extended to transonic flows. L/ 

Appendix 
The Baseline (BSL) Model 

(A-2) 

The constants $ of the new model are calculated from 
the consmts, dl, $2, as follows: 

4 = Fldl + (1 - F1162. (A-3) 

The constants of Set 1 ($1) arc (Wilcox): 

(A-4) uk1 = 0.5, uWl = 0.5, /91 = 0.0750, 
b 

@* = 0.09, K = 0.41, y1 = @1/,9* - m w 1 ~ 2 / f i .  



The constants of Set 2 (42) are (standard k - e) :  atid the eddy-viscosity is defined as: 

uk2 = 1.0, uW2 = 0.856, @2 = 0.0828, (A-5) ut = Glk (A-14) 

where Q is the absolute value of the vorticity. l72 is given 

nmz(nlw; QF2) '  - fi* = 0.09, IC = 0.41, 72 = &O,/fi* - 0 ~ 2 r : ~ / @ .  

by: 
2 (A-IS) 172 = tnnh(arg2) 

The function F1 is defined is follows: 

with: 

dx 5 0 0 ~  4 ~ ~ ~ 2 1 2 2 )  (A.7) 

where y iS the distance to the next surface and (?nkw is the 
cross-diffusion term of equation (A-2): 

Important detail !: 
argl = n~in(niax(- ; T I ;  

0.09w~ w C D k w y  In applying this model, it is important that the reader is 
aware of the following ambiguity in the formulation of the 
production term o f w  for the SST Inodel. definition of 
the production term of w is sometimes written as: 

(A-17) 

The eddy-viscosity is defined as: which introduces the nondirnensional group u t 5  in front of 
the str;lin rate tensor. In the original and in the BSL model 
this group is equal to one and the two fonnulations for Pw 

ut = - (A-9) are therefore identical. This is not the case Cor the SST 
model because of equation (A-14). The SST model has been 

k 
W 

- 
and the turbulent stress tensor q j  = -pdu ' .  is: 

8 3  
calibrated withi-cspect toequation (A-2) and equation (A-17) 
should thereford not he used. 
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where L is the approximate length of the compukitional do- 
main. 

Appendix 
The Shear-Stress Transport (SST) Model 

The SST model is identical to the above formulation, 

Set 1 (SST - inner): 

except that the constants, 41, have to be changed to: 

uk1 = 0.85, uui = 0 5  (j1 = 0.0750, a1 = 0.31 (A-13) 

/3* = 0.09, K = 0.41, y1 = 131/1j* - uwltc2/fi v 

'Cebeci, T. md  Smith, A. M., Anulysis of Turbulenr 

2Baldwin, B. S. and Loinax, H., "Thin Layer Ap- 
proximation and Algebraic Model for  Separated Turbulent 
Flows," AIAA Paper 78-257, Jan. 1978. 

Boundury Layers, Academic Press, New York. 1974. 

3Johnson, D. A. and King, L. S., "A Mathematically 
Simple Turbulence Closure Model f o r  Attached and Sepu- 
ruled Turbulent Boundary Layers," AIAA Journul, Vol, 23, 
Nov. 1985,pp. 1684-1692. 

'Jones, W. P. and Launder B. E., "The Calculatioir 
of Low-Reynolds-Number-Phenomena with a Two-Eqyuution 
Model of Turbulence," Int. J .  Heat Mass Tran sf., Vol. 16, 
l973,pp. 1119-1130. 



’Kline, S. J., Cantwell, B. J., Lilley, G. M., eds., 
“1980-1981 AFOSR-HlTM Stanford Conference on Com- 
plex Turbulent Flows. Comparison of Computation and Ex- 
periment,” Stanford Universily, Stanford, CA, 1981 

hRodi, W. and Scheurer, G., “ Scrutinizing the k - f 
Model Under Adverse Pressure Gradient Conditions,” J .  
Fluids Eng., 108, 1 9 8 6 . p ~ .  174-179. 

7Chen, H., C. and Patel, V. C., “Near-Wall Turbulence 
Models for  Complex Flows Including Separation,” AlAA 
Journal, Vol. 26, No. 6,1988. 

sRodi, W., “Experience with Two-Layer Models Com- 
bining the k - f Model with a One-Equation Model Neur the 
Wall,” AIAA Paper 91-0216,Jan. 1991. 

9Wilcox, D.C., “Reassessment of IheScale-Determining 
Equation fo r  Advanced Turbulence Models,” AlAA Journal. 
Vo1.26. Nov. 1988, pp.1299-1310. 

“Coakley, T. I., “Turbulence Modeling Methods for  
the Compressible Navier-Stokes Equations.” AlAA Paper 
83.1693, July 1982. 

”Wilox, D. C. and Rubesin, M. W., “Progress in Tur- 
bulence Modeling for Complex Flow Fields Including the 
Effect of Compressibility,” NASA TP-1517, 1980. 

12Menter, F. R., “Performance of Popular Turbulence 
Models for  Attached and Separated Adverse Pressure Gra- 
dient Flows,” AIAA Journal, Vol. 30, Aug. 1 9 9 2 . p ~ .  2066- 
2072 

13Menter, E R., “Influence of Freestreurn Vulues on 
k - w Turbulence Model Predictions .” AlAA Journul, Vu/. 
30, No. 6 ,  1992 

l‘Menter, E R., “Improved Two-Equution k. - w Tur- 
bulence Models for  Aerodynamic Flows,” NASA Technical 
Memorandum 103975. Ocl. 1992 

I5Driver, D. M., “Reynolds Shear Stress Meusurrments 
in u Separated Boundary Layer,” AlAA Paper 91-1787, 
1991. 

16Rogers, S. E. and Kwak, D., “An UpwindDflerenc- 
ing Scheme for  the Time-Accurate Incompressible Navier- 
Stokes Equations.” AlAA Paper 88-2583. Williumshur~, VA, 
I988 

I7Yee, H. C., Warming, R. F. and Hartcn, A., “lrnplicit 
Total Vuriation Diminishing (TVDJ Schemesfor Steady-Slate 
Calculutions in Gas Dynamics,” Jourrial of Corny Physics, 
Vol. 57,  1985, pp.327-360. 

18Rogers, S. E. personal communication 

19Launder, B. E. and S h m a ,  B. l., “Applicationof the 
Energy-Dissipation Model of Turbulence to the Calculation 
of Flow near a Spinning Disk.” Letters in Heal and Mass 
Transfer, Vol.l,1974,pp. 131-138. 

20Fage, A. and Falkner, V. M., in Taylor G. I., Proc. Ll 

Roy. Soc. London 135,685,1932 

21Wvenanskv, I. andFiedler. H. E., “TheTwo-Dimensional 
MixingRt&n.” j .  FluidMech.. Vol. 41,parr 2 ,  1970. p p .  
327.361. 

22Liepman, H. W. and Laufer, J., ~ ~ ~ n v e s t i g o t i o n ~ ~ ~ r e e  

23SmueI, A. E. and Joubert, P. N., “A Boundary Layer 
Developing in an Increasingly Adverse Pressure Gradient,” 
J .  FluidMech. Vol. 66,part 3,  1974,pp. 481-505. 

TurbuleniMixing,” NACA TN 1257. 

24Driver, D. M., personal communication 

25Driver, D. M. and Seegmiller, H. L., “Feulures of 
a Reallaching Turbulent Shear Layer in DiVerREnt Channel 
Flow,” AlAA Journal, Vol. 23, No. 2 ,  1985. 

26Thangm, S. and Speciale, C. G., “Turbulent Sepu- 
rutedFlow Past a Backward-Facing Step: A Critical Evulu- 
ation of Two-Equation Turbulence Models,” ICASE Report 
No. 91-23,1991 

27Abid, R., Speciale, C. G. and Thang‘m, S., “Apiili- 
cation o fa  New k - r Model to Neur Wull Turbulent Flows.” ‘3 
AlAA Paper 91-0614, Jan. 1991. 

28Coles, D. and Wadock, A. J., “Flying-l-lot-WireStndy 
ofFlow Past an NACA 4412 Airfoil ut Maximum Lif,” AIAA 
Journal, Vol. 17, No.4. 1979. 

29Rogers, S. E., Wiltberg, N. L. and Kwak, D., ’‘Efi- 
cienr Simulation of Incompressible Viscous Flow Over Sin- 
gle and Multi-Element Airfoils,” AlAA Puper 92-0405, Jan. 
1992. 

30Bachalo, W. D. and Johnson, D. A,, “An Investi- 
gation of Transonic Turbulent Boundary Layer Separation 
Generated on an Axisymmelric Flow Model,” AlAA Paper 
79-1479, Williamsburg, Vu, 1979. 

”Horstman, C. C. and Johnson, D. A., “Prediction of 
Trunsonic Sepurated Flows,” AlAA Journal, Vol. 22, No.7, 
p p .  1001 -1003, July 1984. 

12 



1.51 I '  

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
- - u/u. F, +. F. 

(a) Function F1 
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Fig. 9 Velocity profiles for Samuel-Joubcrt flow at x= 1.16, 1.76,2.26,2.87,3.40 m. 
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Fig. 11 Wall pressure distribution for Driver's adverse pressure-gradient flow. 
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Fig. 13 Velocity profiles for Driver's adverse pressure-gradient flow at x/D=-0.091,0.363, 1.088, 1.633,2.177. 
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Fig. 14 Turbulent shear-stress profiles for Driver's adverse pressure-gradient flow at x/D=-O.O91, 0.363, 1.088, 1.633, 
2.111. 
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Fig. 17 Wall shear-stress distribution for backward-facing step flow. 
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Fig. 22 Transonic bump flow expcriincnt of Bachalo and Johnson 
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